From 1 - 10 / 93
  • This Otway Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Otway Basin is an elongated sedimentary basin located on the south-east continental margin of Australia. Covering approximately 150,000 square kilometres and stretching about 500 km from South Australia's Cape Jaffa to Victoria's Port Phillip Bay and Tasmania's north-west, most of the basin is offshore, with a smaller portion onshore. Geological studies of the Otway Basin have primarily focused on its hydrocarbon prospectivity, examining thick Cretaceous aged rocks both onshore and offshore. However, the shallower onshore sedimentary units are more relevant from a groundwater perspective. The basin's formation began with rifting between the Australian and Antarctic plates during the Late Jurassic, leading to regional subsidence and the development of the elongated sedimentary basin. Following the Cretaceous plate breakup, a passive margin basin formed, which subsequently underwent basin inversion, reverse faulting, and folding, interspersed with extensional periods and normal faulting. This complex evolution, combined with sea level variations and volcanic activity, resulted in numerous sedimentary cycles. The sedimentary succession in the basin comprises non-marine sediments and volcanic rocks from the Jurassic and early Cretaceous, with a period of tectonic compression interrupting sedimentation during the mid-Cretaceous. The late Cretaceous and Cenozoic sedimentary and volcanic rocks form the primary groundwater-bearing aquifers of the basin, with various sedimentary environments developing in the Neogene and Quaternary. The basin's structural geology is intricate, with numerous basement highs, sub-basins, troughs, and embayments. Fault systems are prevalent, separating tectonic blocks and potentially influencing groundwater flow, offering conduits for inter-aquifer connectivity. Overall, the Otway Basin's geological history has shaped its hydrocarbon potential and groundwater resources, making it an essential area for ongoing research and exploration in Australia's geological landscape.

  • HiQGA is a general purpose software package for spatial statistical inference, geophysical forward modeling, Bayesian inference and inversion (both deterministic and probabilistic). It includes readily usable geophysical forward operators for airborne electromagnetics (AEM), controlled-source electromagnetics (CSEM) and magnetotellurics (MT). Physics-independent inversion frameworks are provided for probabilistic reversible-jump Markov chain Monte Carlo (rj-MCMC) inversions, with models parametrised by Gaussian processes (Ray and Myer, 2019), as well as deterministic inversions with an "Occam inversion" framework (Constable et al., 1987). In development software for EFTF since 2020

  • This South-east Australian Fractured Rock Province dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. Groundwater in Australia's fractured rock aquifers is stored in fractures, joints, bedding planes, and cavities within the rock mass, comprising about 40% of the country's groundwater. Much of this water can be utilized for irrigation, town water supplies, stock watering, and domestic use, based on state regulations. Fractured systems account for approximately 33% of all bores in Australia but contribute to only 10% of total extraction due to variable groundwater yield. Quantifying groundwater movement in fractured rock systems is challenging, as it depends on the distribution of major fractures. Groundwater flow direction is more influenced by the orientation of fractures than hydraulic head distribution. Recharge in fractured rock aquifers is typically localized and intermediate. In Eastern Australia, New South Wales' Lachlan Orogen, which extends from central and eastern New South Wales to Victoria and Tasmania, is a significant region with diverse lithological units, including deep marine turbidites, shallow marine to sub-areal sediments, extensive granite bodies, and volcano-intrusive complexes. This region contains various mineral deposits, such as orogenic gold, volcanic-hosted massive sulphide, sediment-hosted Cu-Au, porphyry Au-Cu, and granite-related Sn. Note: The study does not include additional Orogens in the east (New England) and west (Thomson and Delamerian). The Delamerian Orogen is present throughout western Tasmania.

  • This Clarence-Moreton Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The formation of the Clarence-Moreton Basin initiated during the Middle Triassic due to tectonic extension. This was followed by a prolonged period of thermal cooling and relaxation throughout the Late Triassic to the Cretaceous. Deposition of a non-marine sedimentary succession occurred during this time, with the Clarence-Moreton Basin now estimated to contain a sedimentary thickness of up to 4000 m. There were three main depositional centres within the basin, and these are known as the Cecil Plain Sub-basin, Laidley Sub-basin and Logan Sub-basin. The Clarence-Moreton Basin sediments were originally deposited in non-marine environments by predominantly northward flowing rivers in a relatively humid climate. The sedimentary sequences are dominated by a mixed assemblage of sandstone, siltstone, mudstone, conglomerate and coal. Changing environmental conditions due to various tectonic events resulted in deposition of interbedded sequences of fluvial, paludal (swamp) and lacustrine deposits. Within the Clarence-Moreton Basin, coal has been mined primarily from the Jurassic Walloon Coal Measures, including for the existing mines at Commodore and New Acland. However, coal deposits also occur in other units, such as the Grafton Formation, Orara Formation, Bundamba Group, Ipswich Coal Measures, and Nymboida Coal Measures. Overlying the Clarence-Moreton Basin in various locations are Paleogene and Neogene volcanic rocks, such as the Main Range Volcanics and Lamington Volcanics. The thickness of these volcanic rocks is typically several hundred metres, although the maximum thickness of the Main Range Volcanics is about 900 m. Quaternary sediments including alluvial, colluvial and coastal deposits also occur in places above the older rocks of the Clarence-Moreton Basin.

  • This Carnarvon Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Carnarvon Basin is a large sedimentary basin covering the western and north-western coast of Western Australia, stretching over 1,000 km from Geraldton to Karratha. It is predominantly offshore, with over 80% of the basin located in water depths of up to 4,500 m. The basin is elongated north to south and connects to the Perth Basin in the south and the offshore Canning Basin in the north-east. It is underlain by Precambrian crystalline basement rocks. The Carnarvon Basin consists of two distinct parts. The southern portion comprises onshore sub-basins with mainly Paleozoic sedimentary rocks extending up to 300 km inland, while the northern section consists of offshore sub-basins containing Mesozoic, Cenozoic, and Paleozoic sequences. The geological evolution of the Southern Carnarvon Basin was shaped by multiple extensional episodes related to the breakup of Gondwana and reactivation of Archean and Proterozoic structures. The collision between Australia and Eurasia in the Mid-Miocene caused significant fault reactivation and inversion. The onshore region experienced arid conditions, leading to the formation of calcrete, followed by alluvial and eolian deposition and continued calcareous deposition offshore. The Northern Carnarvon Basin contains up to 15,000 m of sedimentary infill, primarily composed of siliciclastic deltaic to marine sediments from the Triassic to Early Cretaceous and shelf carbonates from the Mid-Cretaceous to Cenozoic. The basin is a significant hydrocarbon province, with most of the resources found within Upper Triassic, Jurassic, and Lower Cretaceous sandstone reservoirs. The basin's development occurred during four successive periods of extension and thermal subsidence, resulting in the formation of various sub-basins and structural highs. Overall, the Carnarvon Basin is a geologically complex region with a rich sedimentary history and significant hydrocarbon resources. Exploration drilling has been ongoing since 1953, with numerous wells drilled to unlock its hydrocarbon potential.

  • This Bonaparte Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Bonaparte Basin is a large sedimentary basin off the north-west coast of Australia, encompassing both offshore and onshore areas. It has undergone multiple phases of extension, deposition, and tectonic inversion from the Paleozoic to Cenozoic periods. The Petrel Sub-basin, situated on the eastern margin, exhibits a north-west trending graben/syncline and exposes lower Paleozoic rocks onshore while transitioning to upper Paleozoic, Mesozoic, and Cenozoic sediments offshore. Onshore, the basin's geological structures reflect two dominant regimes: north to north-north-east trending Proterozoic basement structures associated with the Halls Creek Mobile Zone, and north-north-west trending basin structures linked to the rifting and later compressional reactivation of the Petrel Sub-basin. The Petrel Sub-basin has experienced growth and tectonic inversion since the Paleozoic, marked by volcanic activity, deposition of clastics and carbonates, and extension events. During the Devonian, extension occurred along faults in the Ningbing Range, leading to the deposition of clastics and carbonates. The Carboniferous to Permian period witnessed offshore extension associated with the Westralian Superbasin initiation, while onshore deposition continued in shallow marine and transitional environments. Thermal subsidence diminished in the Early Permian, and subsequent compression in the mid-Triassic to Early Jurassic reactivated faults, resulting in inversion anticlines and monoclines. After the Early Jurassic, the sub-basin experienced slow sag with predominantly offshore deposition. Post-Cretaceous deformation caused subsidence, and an Early Cretaceous transgression led to shallow marine conditions and the deposition of chert, claystone, and mudstones. Mid-Miocene to Recent compression, related to continental collision, reactivated faults and caused localized flexure. The stratigraphy of the onshore Bonaparte Basin is divided into Cambro-Ordovician and Middle Devonian to Early Permian sections. Studies have provided insights into the basin's stratigraphy, with an update to the Permo-Carboniferous succession based on seismic interpretation, borehole data integration, field validation, and paleontological information. However, biostratigraphic subdivision of the Carboniferous section remains challenging due to poorly constrained species definitions, leading to discrepancies in the application of biozonations.

  • The continental slope seaward of the Totten Glacier and Sabrina Coast displays a suite of submarine canyons separated by ridges. The ridges show a range of morphological features that indicate they form by accretion of pelagic and hemipelagic sediment which can be remobilised by mass movement. The study area can be divided into two areas with distinct geomorphological features. Canyons in the eastern part of the study area have concave thalwegs and are linked to the shelf edge and upper slope and show signs of erosion and deposition along their beds suggesting cycles of activity controlled by climate cycles. The major canyon in the western part of the area has a convex thalweg. It is likely fed predominantly by mass movement from the flanks of the adjacent ridges with less input sediment from the shelf edge. The ridges between canyons in the Eastern part of the study area are asymmetric with crests close to the west bank of adjacent canyons and are mostly formed by westward advection of fine sediment lofted from turbidity currents and deposition of pelagic sediment. The ridges in the western part of the study area are more likely fully contourites, formed by accretion of suspended sediment with their associated canyons fed by flows derived predominantly from slumping on the adjacent ridge flanks. Canyons and ridges in the eastern part of the study area lie to the east of the Totten Glacier and are seaward of small ice drainage basins feeding the Moscow University Ice Shelf. Ridges and canyons in the western part of area formed from sediment transported along the margin and from detritus originating from the Totten Glacier. Higher sediment supply produced larger, shallower ridges that interact with ocean currents and coincide with a long-lived depocenter. The overall geomorphology of the Sabrina Coast slope is part of a continuum of mixed contourite-turbidite systems identified on the Antarctic margin. These ridges are thus prime locations to sample for sedimentary records of the Totten Glacier’s interaction with the adjacent ocean. <b>Citation:</b> E. O'Brien, A.L. Post, S. Edwards, T. Martin, A. Caburlotto, F. Donda, G. Leitchenkov, R. Romeo, M. Duffy, D. Evangelinos, L. Holder, A. Leventer, A. López-Quirós, B.N. Opdyke, L.K. Armand, Continental slope and rise geomorphology seaward of the Totten Glacier, East Antarctica (112°E-122°E), <i>Marine Geology</i>, Volume 427, 2020, 106221, ISSN 0025-3227, https://doi.org/10.1016/j.margeo.2020.1062

  • This flythrough highlights shallow and mesophotic seabed environments of Elizabeth and Middleton Reefs, located within the Lord Howe Marine Park. These reefs are unique because they are the southern-most platform reefs in the world and host a diverse range of tropical, sub-tropical and temperate marine species. High-resolution multibeam bathymetry data and seafloor imagery used in this flythrough was acquired by the Marine Biodiversity Hub, during the period 31 January to 6 February 2020 on board the Australian Maritime College vessel, TV Bluefin. Participating agencies included Geoscience Australia, the Institute for Marine and Antarctic Studies (University of Tasmania), the Australian Centre for Field Robotics (University of Sydney) through their involvement with the Integrated Marine Observing System (IMOS), NSW Department of Primary Industries and Parks Australia. The specific aim of the survey was to fill knowledge gaps on the distribution, extent and structure of seabed habitats and associated sessile and mobile fauna in the lagoon and mesophotic shelves of Elizabeth (Recreational Use Zone) and Middleton (National Park Zone) Reefs, using a suite of national standard survey tools and best practice sampling procedures. Data acquisition for the project included seabed mapping using multibeam sonar (Kongsberg EM 2040C HD, 300 kHz), seabed imagery acquisition by Autonomous Underwater Vehicles (AUV Sirius and AUV Nimbus), sediment samples, and imagery of demersal fish communities by stereo-baited remote underwater videos (stereo-BRUVs). This work was undertaken by the Marine Biodiversity Hub, a collaborative partnership supported through funding from the Australian Government’s National Environmental Science Program (NESP), and Parks Australia. AUV data was sourced from Australia’s Integrated Marine Observing System (IMOS) – IMOS is enabled by the National Collaborative Research Infrastructure Strategy (NCRIS). It is operated by a consortium of institutions as an unincorporated joint venture, with the University of Tasmania as Lead Agent. This multimedia product is published with the permission of the CEO, Geoscience Australia.

  • World elevation map that shows the shape of the major tectonic plates. Physical print in colour for giveaway. When completed the 'Tectonic Plates Jigsaw Puzzle' will fit on a desk. Suitable for primary Years 5-6 and secondary Years 7-12.

  • This Bowen Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Bowen Basin is part of the Sydney–Gunnedah–Bowen basin system and contains up to 10,000 m of continental and shallow marine sedimentary rocks, including substantial deposits of black coal. The basin's evolution has been influenced by tectonic processes initiated by the New England Orogen, commencing with a phase of mechanical extension, and later evolving to a back-arc setting associated with a convergent plate margin. Three main phases of basin development have been identified; 1) Early Permian: Characterized by mechanical extension, half-graben development, thick volcanic units and fluvio-lacustrine sediments and coal deposits. 2) Mid Permian: A thermal relaxation event led to the deposition of marine and fluvio-deltaic sediments, ending with a regional unconformity. 3) Late Permian and Triassic: Foreland loading created a foreland basin setting with various depositional environments and sediment types, including included fluvial, marginal marine, deltaic and marine sediments along with some coal deposits in the late Permian, and fluvial and lacustrine sediments in the Triassic. Late Permian peat swamps led to the formation of extensive coal seams dominating the Blackwater Group. In the Triassic, fluvial and lacustrine deposition associated with foreland loading formed the Rewan Formation, Clematis Sandstone Group, and Moolayember Formation. The basin is a significant coal-bearing region with over 100 hydrocarbon accumulations, of which about one third are producing fields. The Surat Basin overlies the southern Bowen Basin and contains varied sedimentary assemblages hosting regional-scale aquifer systems. Cenozoic cover to the Bowen Basin includes a variety of sedimentary and volcanic rock units. Palaeogene and Neogene sediments mainly form discontinuous units across the basin. Three of these units are associated with small eponymous Cenozoic basins (the Duaringa, Emerald and Biloela basins). Unnamed sedimentary cover includes Quaternary alluvium, colluvium, lacustrine and estuarine deposits; Palaeogene-Neogene alluvium, sand plains, and duricrusts. There are also various Cenozoic intraplate volcanics across the Bowen Basin, including central volcanic- and lava-field provinces.